Testing and Modeling Threshold Autoregressive Processes
نویسندگان
چکیده
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/astata.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.
منابع مشابه
Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملSome Nonlinear Threshold Autoregressive Time Series Models for Actuarial Use
This paper introduces nonlinear threshold time series modeling techniques that actuaries can use in pricing insurance products, analyzing the results of experience studies, and forecasting actuarial assumptions. Basic “self-exciting” threshold autoregressive (SETAR) models, as well as heteroscedastic and multivariate SETAR processes, are discussed. Modeling techniques for each class of models a...
متن کاملModeling and forecasting exchange rate volatility in Bangladesh using GARCH models: a comparison based on normal and Student’s t-error distribution
Methods: Using daily exchange rates for 7 years (January 1, 2008, to April 30, 2015), this study attempted to model dynamics following generalized autoregressive conditional heteroscedastic (GARCH), asymmetric power ARCH (APARCH), exponential generalized autoregressive conditional heteroscedstic (EGARCH), threshold generalized autoregressive conditional heteroscedstic (TGARCH), and integrated g...
متن کاملTesting and Modeling Multivariate Threshold Models
Threshold autoregressive models in which the process is piecewise linear in the threshold space have received much attention in recent years. In this paper, we use predictive residuals to construct a test statistic to detect threshold nonlinearity in a vector time series and propose a procedure for building a multivariate threshold model. The thresholds and the model are selected jointly based ...
متن کاملFitting piecewise linear threshold autoregressive models by means of genetic algorithms
A nonlinear version of the threshold autoregressive model for time series is introduced. A peculiar requirement on parameters, except possibly for the constant term, is the continuity, that seems a natural and useful assumption. This model is a special case of the general state-dependent models, where the moving-average term is dropped and a particular form for the dependence on the state is sp...
متن کامل